The Use of Silicates for Corrosion Control in Building Drinking Water Systems

Darren A. Lytle and Michael R. Schock U.S. EPA, Cincinnati, Ohio 45268

Objectives

- Provide an introduction to silicate chemistry
- Discuss the use of silicates for corrosion control in DW systems
- Present pilot and field study data where silicates were used to control lead, copper and/or iron release

Soluble Silicates

Chemistry

- Produced by mixing silica sand and sodium carbonate at 1100 to 1200°C
- Silicates are defined by the wt. ratio of SiO₂:Na₂O
 - Ratio of 3.22 is typical
 - Lower ratios may also be used (more basic)
- Concentrated solutions contain a mixture of polymeric and monomeric species
- Monomeric species dominate in dilute solutions (i.e., Si(OH)₄ and HSiO₃⁻)

Silicates for Corrosion Control

- Zinc in hot water systems
 - Negatively charged silica species adsorbed to zinc hydroxide
 - Particle enmeshment
 - Need for existing corrosion deposit
- Aluminum
- Lead and Copper
 - Protective scale??
 - pH benefit

Silicates for Corrosion Control Continued

- 24 mg SiO₂/L start-up dose (3.22 SiO₂/Na₂O)
- Incremental decrease dose after 30 to 60 days
- Maintenance dose of 8 to 12 mg SiO₂/L

The Use of Sodium Silicates to Prevent Red Water (Iron Precipitation)

- Added at point of (or shortly after) oxidant addition
- Adsorption/dispersion mechanism
- 12 mg SiO₂/L/2 mg Fe/L
- Cations such as calcium can interfere

Case Study #1: New Building The Problem

- High and sporadic lead and copper
- Excessive use of lead:tin solder
- Brass fixtures
- New building, unused plumbing

Case Study #1: A New Building Treatment Alternatives

- Remove lead-based solder joints
- Install point-of-use devices
- Use the system (flushing)
- Install chemical treatment (pH adj., phosphate inhibitors, silicate)

BUILDING STRUCTURE

- 2 sections
 - "animal" section
 - "laboratory" section
- Four levels (ground, 1st, 2nd, and 3rd floors)
- Each floor consisted of 2 wings
- Each wing consisted of 9 rooms
- Each room had at least 1 faucet and sink
- A large utility chase ran between wings
- Water lines supplying wings could be isolated

SOURCE WATER QUALITY

ANALYTE

Alkalinity

pН

Calcium

Magnesium

Sodium

Chloride

Sulfate

Silica

YEARLY AVE.

31 mg/L

7.7 units

18.3 mg/L

4.0 mg/L

6.5 mg/L

19.3 mg/L

12.5 mg/L

6.4 mg/L

CHEMICAL TREATMENT

- "Generic" orthophosphate
 - -contains Na and K
 - -dosage= 3.0 mg PO₄/L
- Zinc orthophosphate
 - -dosage= 3.0 mg PO₄/L (Zn= 1.25) mg/L)
- Sodium silicate
 - -"start-up" dosage= 24-30 mg SiO₂/L
 - -"maintenance" dosage= 16 mg SiO₂/L

SAMPLING PROCEDURE

Monday-Friday:

- -Water flow
 - Faucets open 2 hours/day
 - Faucets open 4 times a day; 1/2 hr on/1 1/2 hr off

–Sampling

- Tues, and Fri. samples are taken for metal analysis
- Tues, samples were taken for general water quality
- 12 hour stand time
- pH was measured in the field

Building Configuration

Sodium Silicate Feed System

WATER QUALITY CHANGES

Sodium silicate

- $SiO_2 = 32.0/16.3 \text{ mg/L}$
- »pH= 9.5/9.0 (increase 1.8/1.3 units)
- »Na=10.2 mg/L (increase 3.7 mg/L)

Lead-Control

Lead-Silicate Treatment

Lead- Calcium Orthophosphate

Copper- Control

Copper- Silicate Treatment

Case Study #2: Small Utility with a Lead and Copper, and Red Water Problem

- Pre-1990: "Red water" complaints
- 1990: Polyphosphate feed, ~2 mg/L (as product)
- Flushing program to prevent/remove Fe
- Oct. 1992, LCR Monitoring
 - 0.077 mg Pb/L 90th percentile
 - 5.87 mg Cu/L 90th percentile

Approximate Water Chemistry Characteristics

	Wells 1-3	Wells 4-5
pН	6.1-6.3	6.0-6.3
Alk (CaCO ₃)	25-30	20-25
TIC (mgC/L)	13-18	13-15
Ca	8	6
Fe	<0.01	0.3-3+
Mn	<0.010.2	0.2
SiO ₂	10-14	10-12

pH Effect of Different SiO₂:Na₂O

Ratios at DIC = 13 mg C/L

Silicate Feed System

Treatment Change Observations

- Took several months for pH to stabilize in distribution system
 - Silicate "demand"?
 - pH Buffering of existing carbonate/phosphate/hydroxide scales?
- After 6 mos., silicate raised to match pH target better

pH Effects, Wells 1 & 2

Corrosion Control in Section NaOH + Silicate (Wells 1 & 2)

pH Effects, Wells 4 & 5

Corrosion Control in Section with Silicate (Wells 4 & 5)

Corrosion Control in Section with Silicate (Wells 4 & 5)

Treatment Effectiveness: Pb

Treatment Effectiveness: Cu

Conclusion

- Silicates can be used to reduce lead and copper
 - Film
 - pH
- Secondary benefit of red water control
- Relatively simple to use

Initial Monitoring Results: Pb

Initial Monitoring Results: Cu

Treatment Effects on Pb Relating to Sites

Treatment Effects on Cu Relating to Sites

Sites with Lead Service Lines

Effect of Silicates on Iron Particles DIC=5 mg C/L, 5 mg Fe/L, 30 mg SiO₂/L, 22°C

Effect of Silicates on Iron Particles DIC=5 mg C/L, 5 mg Fe/L, 30 mg SiO₂/L, 22°C

Evidence of Effective Iron Sequestration

Sequestration Performance

- Color <15 cu, turbidity < 1.0 NTU at good pH for Pb and Cu control
- No clear relation of color and Mn, so adequate for this purpose
- Monthly hot water samples at 4 sites
 - higher color
 - lower iron
 - no clear sequestration breakdown

Operational Problems

- Clogging of silicate feed during first cold months
 - 1.6 ratio more viscous than 3.22 ratio product
 - higher amounts of solids
 - could congeal at 12°C

Solution:

- maintain building above 15°C
- mfgr. improved process, reduced solids

Operational Problems

- Loss of suction on silicate feed pump
- © Solution:
 - redesign solution tank to place bottom level above pump
 - transfer of silicate solution (barrels) by pump